End of Year Expectations
 Maths
 Year 6

Please note that the objectives are not necessarily taught in the order listed below.

The National Curriculum for mathematics aims to ensure that all pupils:

- Become fluent in the fundamentals of mathematics, so that pupils have conceptual understanding and can recall and apply their knowledge rapidly and accurately to problems
- Reason mathematically by following a line of enquiry, conjecturing relationships and generalisations, and developing an argument or proof using mathematical language
- Can solve problems by applying their mathematics to a variety of routine and non-routine problems with increasing sophistication, including breaking down problems into a series of simpler steps and persevering in seeking solutions.

Learning Objectives Additional information

Number and Place Value

- read, write, order and compare numbers up to 10000000 and determine the value of each digit
- round any whole number to a required degree of accuracy
- use negative numbers in context, and calculate intervals across o
- solve number and practical problems that involve all of the above

For whole numbers, the more digits a number has, the larger it must be: any 4-digit whole number is larger than any 3-digit whole number. But this is not true of decimal numbers: having more digits does not make a decimal number necessarily bigger. For example, 0.5 is larger than 0.35.
Ordering decimal numbers uses the same process as for whole numbers ie we look at the digits in matching places in the numbers, starting from the place with the highest value ie from the left. The number with the higher different digit is the higher number. For example, 256 is greater than 247 because 256 has 5 tens but 247 has only 4 tens. Similarly 1.0843 is smaller than 1.524 because 1.0843 has o tenths but 1.524 has 5 tenths.

Addition and Subtraction

- solve addition and subtraction multi-step problems in contexts, deciding which operations and methods to use and why
- use estimation to check answers to calculations and determine, in the context of a problem, an appropriate degree of accuracy

Deciding which calculation method to use is supported by being able to take apart and combine numbers in many ways. For example, calculating $8.78+5.26$ might involve calculating $8.75+5.25$ and then adjusting the answer.
The associative rule helps when adding three or more numbers: $367+275+525$ is probably best thought of as $367+(275+525)$ rather than $(367+275)+525$.

Multiplication and Division

- multiply multi-digit numbers up to four digits by a 2-digit whole number using the formal written method of long multiplication
- divide numbers up to four digits by a 2-digit whole number using the formal written method of long division, and interpret remainders as whole number
- remainders, fractions, or by rounding, as appropriate for the context
- divide numbers up to four digits by a 2-digit number using the formal written method of

Standard written algorithms use the conceptual structures of the mathematics to produce efficient methods of calculation.
Standard written multiplication method involves a number of partial products. For example, 36×24 is made up of four partial products $30 \times 20,30 \times 4,6 \times 20,6$ $\times 4$.
There are connections between factors, multiples and prime numbers and between fractions, division and ratios.

short division where appropriate, interpreting remainders according to the context - use their knowledge of the order of operations to carry out calculations involving the four operations - solve problems involving addition, subtraction, multiplication and division - multiply 1-digit numbers with up to two decimal places by whole numbers (taken from Fractions including Decimals and Percentages)	
Fractions Decimals	
- use factors to simplify fractions; use common multiples to express fractions in the same denominator - compare and order fractions, including fractions >1 - add and subtract fractions with different denominators and mixed numbers, using the concept of equivalent fractions - multiply simple pairs of proper fractions, writing the answer in its simplest form [for example, 14 $\times 12=18$] - divide proper fractions by whole numbers [for example, $13 \div 2=16$] - multiply 1-digit numbers with up to two decimal places by whole numbers - and use equivalences between simple fractions, decimals and percentages, including in different contexts	Fractions express a relationship between a whole and equal parts of a whole. Pupils should recognise this and speak in full sentences when answering a question involving fractions. For example, in response to the question 'What fraction of the journey has Tom travelled?' the pupil might respond, 'Tom has travelled two thirds of the whole journey.' Equivalent fractions are connected to the idea of ratio: keeping the numerator and denominator of a fraction in the same proportion creates an equivalent fraction. Putting fractions in place on the number lines helps understand fractions as numbers in their own right.
Ratio	
- solve problems involving the relative sizes of two quantities where missing values can be found by using integer multiplication and division facts - solve problems involving the calculation of percentages [for example, of measures and such as 15% of 360] and the use of percentages for comparison - solve problems involving similar shapes where the scale factor is known or can be found - solve problems involving unequal sharing and grouping using knowledge of fractions and multiples	It is important to distinguish between situations with an additive change or a multiplicative change (which involves ratio). For example, if four children have six sandwiches to share and two more children join them, although two more children have been added, the number of sandwiches then needed for everyone to still get the same amount is calculated multiplicatively.

Algebra

- generate and describe linear number sequences
- express missing number problems algebraically
- find pairs of numbers that satisfy an equation with two unknowns

A linear sequence of numbers is where the difference between the values of neighbouring terms is constant. The relationship can be generated in two ways: the sequence-generating rule can be recursive, i.e. one number in the sequence is generated from the preceding number (e.g. by adding 3 to the preceding number), or ordinal, i.e. the position of the number in the sequence generates the number (e.g. by multiplying the position by 3 , and then subtracting 2). Sometimes sequence generating rules that seem different can generate the same sequence: the ordinal rule 'one more than each of the even numbers, starting

	with 2^{\prime} generates the same sequence as the recursive rule ${ }^{\text {start at } 1 \text { and add on } 2, \text { then another } 2 \text {, then }}$ another 2, and so on'. Sequences can arise from naturally occurring patterns in mathematics and it is exciting for pupils to discover and generalise these. For example adding successive odd numbers will generate a sequence of square numbers. Letters or symbols are used to represent unknown numbers in a symbol sentence (i.e. an equation) or instruction. Usually, but not necessarily, in any one symbol sentence (equation) or instruction, different letters or different symbols represent different unknown numbers. A value is said to solve a symbol sentence (or an equation) if substituting the value into the sentence (equation) satisfies it, i

Measurement

- solve problems involving the calculation and conversion of units of measure, using decimal notation up to three decimal places where appropriate
- use, read, write and convert between standard units, converting measurements of length, mass, volume and time from a smaller unit of measure to a larger unit,
- and vice versa, using decimal notation to up to three decimal places
- recognise that shapes with the same areas can have different perimeters and vice versa
- calculate the area of parallelograms and triangles

To read a scale, first work out how much each mark or division on the scale represents.
The unit of measure must be identified before measuring. Selecting a unit will depend on the size and nature of the item to be measured and the degree of accuracy required.

- draw 2-D shapes using given dimensions and angles
- recognise, describe and build simple 3-D shapes, including making nets
- compare and classify geometric shapes based on their properties and sizes and find unknown angles in any triangles, quadrilaterals, and regular polygons
- illustrate and name parts of circles, including radius, diameter and circumference and know that the diameter is twice the radius
- recognise angles where they meet at a point, are on a straight line, or are vertically opposite, and find missing angles
- describe positions on the full coordinate grid (all four quadrants)
- draw and translate simple shapes on the coordinate plane, and reflect them in the axes

Variance and invariance are important ideas in mathematics, particularly in geometry. A set of quadrilaterals for example may vary in many ways in terms of area, length of sides and the size of individual angles. However there are a set of invariant properties which remain common to all quadrilaterals, namely they have four sides and their internal angles sum to 360°. Some of these properties emerge from naturally occurring constraints, for example the sum of the internal angles will always sum to 360°, and they can do nothing else! The questions 'What's the same?' and 'What's different?' can draw pupils' attention to variance and invariance.
Shapes can be alike in essentially two different ways: congruent and similar. Congruent shapes are alike in all ways: they could occupy exactly the same space. Similar shapes share identical geometrical properties but can differ in size. All equilateral triangles are similar, but only identically sized ones are congruent. Not all isosceles triangles are similar.
Angle properties are a mix of necessary conditions and conventions. It is a necessary condition that angles on a

	straight line combine to a complete half turn. That we measure the half turn as 180° is conventional.
Statistics	

